This exam consists of 5 exercises on 3 pages. Make each exercise on a separate sheet of paper! Write your name and student number on each sheet of paper! Write clearly, using a pen (not a pencil). A simple scientific calculator is allowed during the exam, but a graphing calculator is not permitted.

Exercise 1 (4 points)
Rewrite the following results, using the correct notation:
a) $T=312.659 \mathrm{~K} \pm 254 \mathrm{mK}$
b) $\lambda=1.064 \mu \mathrm{~m} \pm 9.5 \mathrm{~nm}$
c) $R=47 \mathrm{k} \Omega \pm 33 \Omega$
d) $p=101.3 \mathrm{kPa} \pm 16 \mathrm{~Pa}$

Exercise 2 (5 points)
The speed of sound v in a gas is under certain conditions given by:

$$
v=\sqrt{\frac{5 p}{3 \rho}}
$$

with p the pressure and ρ the density of the gas. The pressure and density have been measured: $p=1.01 \pm 0.01 \mathrm{~N} / \mathrm{m}^{2}$ and $\rho=1.21 \pm 0.02 \mathrm{~kg} / \mathrm{m}^{3}$.
a) Calculate the speed of sound v.
b) Calculate the relative error and the absolute error in v.
c) Write the final result in the correct notation: $v=\ldots \pm \ldots$

Exercise 3 (9 points)

Two independent measurements of the mass M of an object yield: $M_{1}=18.9 \pm 0.3 \mathrm{~kg}$ and $M_{2}=19.3 \pm 0.6 \mathrm{~kg}$.
a) Calculate the weighted average mass M.
b) Calculate the error ΔM of M.
c) If the mass is determined again using the same method, what is the probability of finding a value of $M \leq 18.8 \mathrm{~kg}$?
d) If the mass is determined again using the same method, what is the probability of finding a value of M in the interval $19.1-19.2 \mathrm{~kg}$?

z	$F(z)$	z	$F(z)$	z	$F(z)$	z	$F(z)$
0.0	0.0000	1.0	0.3413	2.0	0.4772	3.0	0.4987
0.1	0.0398	1.1	0.3643	2.1	0.4821	3.1	0.4990
0.2	0.0793	1.2	0.3849	2.2	0.4861	3.2	0.4993
0.3	0.1179	1.3	0.4032	2.3	0.4893	3.3	0.4995
0.4	0.1554	1.4	0.4192	2.4	0.4918	3.4	0.4997
0.5	0.1915	1.5	0.4332	2.5	0.4938	3.5	0.4998
0.6	0.2258	1.6	0.4452	2.6	0.4953	3.6	0.4998
0.7	0.2580	1.7	0.4554	2.7	0.4965	3.7	0.4999
0.8	0.2881	1.8	0.4641	2.8	0.4974	3.8	0.4999
0.9	0.3159	1.9	0.4713	2.9	0.4981	3.9	0.5000

Given:

$$
\begin{gathered}
N(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) \\
F(z)=\int_{0}^{z} N(y) d y
\end{gathered}
$$

Exercise 4 (6 points)

The resistance t of a pendulum is measured 5 times, with the following results: $t=6.17 \mathrm{~s}, 6.13 \mathrm{~s}, 6.23 \mathrm{~s}, 6.11 \mathrm{~s}, 6.16 \mathrm{~s}$.
a) Calculate the best estimate for the average period of the pendulum.
b) Calculate the best estimate for the standard deviation σ of these measurements.
c) Calculate the error in the best estimate for the period calculated in part a).

Exercise 5 (12 points)
The following formulae are given for fitting data to a straight line $y=a x+b$:

$$
\begin{gathered}
a=\frac{N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}, \\
b=\frac{\sum y_{i} \sum x_{i}^{2}-\sum x_{i} \sum x_{i} y_{i}}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}, \\
(\Delta a)^{2}=\left(\frac{1}{\sum x_{i}^{2}-N \bar{x}^{2}}\right) \frac{\sum r_{i}^{2}}{N-2} \\
(\Delta b)^{2}=\left(\frac{1}{N}+\frac{\bar{x}^{2}}{\sum x_{i}^{2}-N \bar{x}^{2}}\right) \frac{\sum r_{i}^{2}}{N-2} .
\end{gathered}
$$

The resistance R of a platinum wire is sometimes used as a thermometer. Based on theory, it is known that R is a function of temperature T :

$$
R(T)=R_{0}+\alpha T
$$

with R_{0} and α constants. For a specific platinum wire the following measurement results have been obtained:

$T\left({ }^{\circ} \mathrm{C}\right)$	$R(\Omega)$
-50.0	80.3
-40.0	84.0
-30.0	88.3
-20.0	92.0
-10.0	96.3

The error in T is negligible.
a) Calculate the best estimates for the constants R_{0} and α using the method of least squares.
b) Calculate the errors in R_{0} and α.
c) Calculate the value R and its error ΔR at a temperature $T=-25.5^{\circ} \mathrm{C}$ (assume in this case $\left.\Delta T=0.1^{\circ} \mathrm{C}\right)$.
d) A smart student performs a fit to a parabolic function $R=p T^{2}+q T+w$ as well and finds $\sum r_{i}^{2}=0.0823$, where r_{i} is the difference between observed value and fitted value. Calculate χ^{2} (necessary for the χ^{2} test). Assume $\Delta R=0.5 \Omega$.
e) Suppose the $10 \%-90 \%$ probability level is chosen. Using the table below, indicate whether a parabolic function is acceptable as well or not.

$F=$	0.01	0.10	0.50	0.90	0.99
ν					
1	0.000	0.016	0.455	2.706	6.635
2	0.020	0.211	1.386	4.605	9.210
3	0.115	0.584	2.366	6.251	11.35
4	0.297	1.064	3.357	7.779	13.28
5	0.554	1.610	4.351	9.236	15.09

Table 1: Cumulative χ^{2} distribution $F\left(\chi^{2} \mid \nu\right)$.

Exam grade $=($ total of points $) / 4+1$

