Exam Physics Laboratory 1: Data and error analysis 25 November 2013

This exam consists of **5 exercises** on 3 pages. Make each exercise on a separate sheet of paper! Write your name and student number on each sheet of paper! Write clearly, using a pen (not a pencil). A simple scientific calculator is allowed during the exam, but a graphing calculator is not permitted.

Exercise 1 (4 points)

Rewrite the following results, using the correct notation:

a)
$$T = 312.659 \text{ K} \pm 254 \text{ mK}$$

- b) $\lambda = 1.064 \ \mu m \pm 9.5 \ nm$
- c) $R = 47 \text{ k}\Omega \pm 33 \Omega$
- d) $p = 101.3 \text{ kPa} \pm 16 \text{ Pa}$

Exercise 2 (5 points)

The speed of sound v in a gas is under certain conditions given by:

$$v=\sqrt{\frac{5p}{3\rho}}$$

with p the pressure and ρ the density of the gas. The pressure and density have been measured: $p = 1.01 \pm 0.01 \text{ N/m}^2$ and $\rho = 1.21 \pm 0.02 \text{ kg/m}^3$.

- a) Calculate the speed of sound v.
- b) Calculate the relative error and the absolute error in v.
- c) Write the final result in the correct notation: $v = \dots \pm \dots$

Exercise 3 (9 points)

Two independent measurements of the mass M of an object yield: $M_1 = 18.9 \pm 0.3$ kg and $M_2 = 19.3 \pm 0.6$ kg.

- a) Calculate the weighted average mass M.
- b) Calculate the error ΔM of M.
- c) If the mass is determined again using the same method, what is the probability of finding a value of $M \leq 18.8$ kg?
- d) If the mass is determined again using the same method, what is the probability of finding a value of M in the interval 19.1 19.2 kg?

z	F(z)	z	F(z)	z	F(z)	z	F(z)
0.0	0.0000	1.0	0.3413	2.0	0.4772	3.0	0.4987
0.1	0.0398	1.1	0.3643	2.1	0.4821	3.1	0.4990
0.2	0.0793	1.2	0.3849	2.2	0.4861	3.2	0.4993
0.3	0.1179	1.3	0.4032	2.3	0.4893	3.3	0.4995
0.4	0.1554	1.4	0.4192	2.4	0.4918	3.4	0.4997
0.5	0.1915	1.5	0.4332	2.5	0.4938	3.5	0.4998
0.6	0.2258	1.6	0.4452	2.6	0.4953	3.6	0.4998
0.7	0.2580	1.7	0.4554	2.7	0.4965	3.7	0.4999
0.8	0.2881	1.8	0.4641	2.8	0.4974	3.8	0.4999
0.9	0.3159	1.9	0.4713	2.9	0.4981	3.9	0.5000

Given:

$$N(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right)$$
$$F(z) = \int_0^z N(y) dy$$

Exercise 4 (6 points)

The resistance t of a pendulum is measured 5 times, with the following results: t = 6.17 s, 6.13 s, 6.23 s, 6.11 s, 6.16 s.

- a) Calculate the best estimate for the average period of the pendulum.
- b) Calculate the best estimate for the standard deviation σ of these measurements.
- c) Calculate the error in the best estimate for the period calculated in part a).

Exercise 5 (12 points)

The following formulae are given for fitting data to a straight line y = ax + b:

$$a = \frac{N\sum x_i y_i - \sum x_i \sum y_i}{N\sum x_i^2 - (\sum x_i)^2},$$

$$b = \frac{\sum y_i \sum x_i^2 - \sum x_i \sum x_i y_i}{N\sum x_i^2 - (\sum x_i)^2},$$

$$(\Delta a)^2 = \left(\frac{1}{\sum x_i^2 - N\overline{x}^2}\right) \frac{\sum r_i^2}{N - 2},$$

$$(\Delta b)^2 = \left(\frac{1}{N} + \frac{\overline{x}^2}{\sum x_i^2 - N\overline{x}^2}\right) \frac{\sum r_i^2}{N - 2}.$$

The resistance R of a platinum wire is sometimes used as a thermometer. Based on theory, it is known that R is a function of temperature T:

$$R(T) = R_0 + \alpha T$$

with R_0 and α constants. For a specific platinum wire the following measurement results have been obtained:

$T(^{\circ}C)$	$R(\Omega)$
-50.0	80.3
-40.0	84.0
-30.0	88.3
-20.0	92.0
-10.0	96.3

The error in T is negligible.

- a) Calculate the best estimates for the constants R_0 and α using the method of least squares.
- b) Calculate the errors in R_0 and α .
- c) Calculate the value R and its error ΔR at a temperature $T = -25.5^{\circ}$ C (assume in this case $\Delta T = 0.1^{\circ}$ C).
- d) A smart student performs a fit to a parabolic function $R = pT^2 + qT + w$ as well and finds $\sum r_i^2 = 0.0823$, where r_i is the difference between observed value and fitted value. Calculate χ^2 (necessary for the χ^2 test). Assume $\Delta R = 0.5 \Omega$.
- e) Suppose the 10% 90% probability level is chosen. Using the table below, indicate whether a parabolic function is acceptable as well or not.

F =	0.01	0.10	0.50	0.90	0.99
ν					
1	0.000	0.016	0.455	2.706	6.635
2	0.020	0.211	1.386	4.605	9.210
3	0.115	0.584	2.366	6.251	11.35
4	0.297	1.064	3.357	7.779	13.28
5	0.554	1.610	4.351	$\begin{array}{c} 2.706 \\ 4.605 \\ 6.251 \\ 7.779 \\ 9.236 \end{array}$	15.09

Table 1: Cumulative χ^2 distribution $F(\chi^2|\nu)$.

Exam grade = (total of points) / 4 + 1